Formation of cytosine glycol and 5,6-dihydroxycytosine in deoxyribonucleic acid on treatment with osmium tetroxide.

نویسندگان

  • M Dizdaroglu
  • E Holwitt
  • M P Hagan
  • W F Blakely
چکیده

OsO4 selectively forms thymine glycol lesions in DNA. In the past, OsO4-treated DNA has been used as a substrate in studies of DNA repair utilizing base-excision repair enzymes such as DNA glycosylases. There is, however, no information available on the chemical identity of other OsO4-induced base lesions in DNA. A complete knowledge of such DNA lesions may be of importance for repair studies. Using a methodology developed recently for characterization of oxidative base damage in DNA, we provide evidence for the formation of cytosine glycol and 5,6-dihydroxycytosine moieties, in addition to thymine glycol, in DNA on treatment with OsO4. For this purpose, samples of OsO4-treated DNA were hydrolysed with formic acid, then trimethylsilylated and analysed by capillary gas chromatography-mass spectrometry. In addition to thymine glycol, 5-hydroxyuracil (isobarbituric acid), 5-hydroxycytosine and 5,6-dihydroxyuracil (isodialuric acid or dialuric acid) were identified in OsO4-treated DNA. It is suggested that 5-hydroxyuracil was formed by formic acid-induced deamination and dehydration of cytosine glycol, which was the actual oxidation product of the cytosine moiety in DNA. 5-Hydroxycytosine obviously resulted from dehydration of cytosine glycol, and 5,6-dihydroxyuracil from deamination of 5,6-dihydroxycytosine. This scheme was supported by the presence of 5-hydroxyuracil, uracil glycol and 5,6-dihydroxyuracil in OsO4-treated cytosine. Treatment of OsO4-treated cytosine with formic acid caused the complete conversion of uracil glycol into 5-hydroxyuracil. The implications of these findings relative to studies of DNA repair are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spontaneous and osmium tetroxide-induced mutagenesis in an Escherichia coli strain deficient in both endonuclease III and endonuclease VIII.

Thymine glycol, uracil glycol, 5-hydroxycytosine and 5-hydroxyuracil are common base lesions produced by cellular metabolism as well as ionizing radiation and environmental carcinogens. Escherichia coli DNA glycosylase, endonuclease III and endonuclease VIII recognize and remove these lesions from DNA. In this study, we assessed the mutagenic potential of these lesions in the supF gene as a for...

متن کامل

Preferential formation of (5S,6R)-thymine glycol for oligodeoxyribonucleotide synthesis and analysis of drug binding to thymine glycol-containing DNA

We previously reported the chemical synthesis of oligonucleotides containing thymine glycol, a major form of oxidative DNA damage. In the preparation of the phosphoramidite building block, the predominant product of the osmium tetroxide oxidation of protected thymidine was (5R,6S)-thymidine glycol. To obtain the building block of the other isomer, (5S,6R)-thymidine glycol, in an amount sufficie...

متن کامل

Alterations of mouse lung tissue dimensions during processing for morphometry: a comparison of methods.

Preservation of original tissue dimensions is an essential prerequisite for morphometric studies. Shrinkage occurring during tissue processing for histology may severely influence the appearance of structures seen under the microscope and stereological calculations. Therefore, shrinkage has to be avoided so that estimates obtained by application of unbiased stereology are indeed unbiased. The p...

متن کامل

Oxidative damage to 5-methylcytosine in DNA.

Exposure of pyrimidines of DNA to ionizing radiation under aerobic conditions or oxidizing agents results in attack on the 5,6 double bond of the pyrimidine ring or on the exocyclic 5-methyl group. The primary product of oxidation of the 5,6 double bond of thymine is thymine glycol, while oxidation of the 5-methyl group yields 5-hydroxymethyluracil. Oxidation of the 5,6 double bond of cytosine ...

متن کامل

A Quantitative Determination of the Osmium Tetroxide-lipoprotein Interaction

The investigation of the fine structure of biological material by means of the electron microscope has depended, to a very large extent, on the deposition of osmium compounds within the tissue during treatment with a buffered osmium tetroxide solution, and the value of such treatment in the fixing of structure and enhancement of contrast is well accepted. Since electron microscopic observations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 235 2  شماره 

صفحات  -

تاریخ انتشار 1986